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Abstract—In many applications of atmospheric transport-chemistry problems, 2 major task is the numer-
ical integration of the stiff systems of ordinary differential equations describing the chemical transforma-
tions. This paper presents a comprehensive numerical comparison between five dedicated explicit and four
implicit solvers for a set of seven benchmark problems from actual applications. The implicit solvers use
sparse matrix techniques to economize on the numerical linear algebra overhead. As a result they are often
more efficient than the dedicated explicit ones, particularly when approximately two or more figures of
accuracy are required. In most test cases, sparse RODAS, a Rosenbrock solver, came out as most competitive
in the 1% error region. Of the dedicated explicit solvers, TWOSTEP came out as best. When less than 1%
accuracy is aimed at, this solver performs very efficiently for tropospheric gas-phase problems. However,
like all other dedicated explicit solvers, it cannot efficiently deal with gas-liquid phase chemistry. The results
presented may constitute a guide for atmospheric modelers to select a suitable integrator based on the type
and dimension of their chemical mechanism and on the desired level of accuracy. Furthermore, we would
like to consider this paper an open invitation for other groups to add new representative test problems to
those described here and to benchmark their numerical algorithms in our standard computational
environment. ; 1997 Elsevier Science Ltd.
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dedicated explicit solvers, sparse implicit solvers.

1. INTRODUCTION

To better understand the transport and fate of trace
gases and pollutants in the atmosphere, comprehen-
sive atmospheric transport-chemistry models have
been developed. For their numerical solution, very
often the operator splitting approach is followed.
A major computational task is then the numerical
integration of the stiff ODE (ordinary differential equa-
tion) systems describing the chemical transformations.
These systems take the special production-loss form

dy
S =fuyk= PEy) = LYY,

YO = (0, ... ym®), )

! Author to whom Correspondence should be addressed.

where L(t,y) is a diagonal matrix. The integration
must be carried out repeatedly at all spatial grid
points for all split intervals chosen. Consequently,
a full transport-chemistry computation involves
a huge number of stiff ODE integrations. Although the
numerical stiff ODE field is well developed and a vari-
ety of efficient and quite reliable stiff ODE solvers is
available (Hairer and Wanner, 1991), the general ex-
perience is that still faster solvers are needed. There
are many such solvers in use in atmospheric models.
Often the numerical methods are adapted for a par-
ticular chemistry scheme, like QssA methods (Hov
et al., 1978; Hesstvedt et al., 1978; Verwer and Sim-
pson, 1995). In such a case a change in the chemistry
scheme necessitates a reconsideration of the numer-
ical scheme as well, which is a disadvantage. Further-
more, this adaptation makes it very hard to really
assess and compare the numerical efficiency and accu-
racy for different solvers. Continuing our previous

3151



3152 A. SANDU er al.

work (see Jay et al., 1995; Verwer et al., 1996 and the
references therein), the purpose of the current paper is
a comprehensive benchmark comparison between
a number of solvers which have been proposed in the
literature. We apply them as normal ODE solvers
without any adaptation for the chemistry scheme.

The paper is organized as follows. In Section 2 we
briefly describe our test set. This set consists of seven
problems based on three tropospheric gas-phase
chemistry schemes, namely a small, a medium and
a large scheme, one stratospheric scheme coming from
NASA, and one hybrid gas-liquid phase scheme from
cloud modeling which we obtained from Matthijsen
(1995). Because of the diverse applications, these
chemical schemes constitute a representative test set
for evaluating and comparing numerical solvers. Sec-
tion 3 is devoted to the solvers. We have tested nine
existing solvers, namely TWOSTEP (Verwer, 1994; Ver-
wer et al., 1996; Verwer and Simpson 1995), CHEMEQ
(Young and Boris, 1977), the most simple QssA solver,
an extrapolated QSSA solver (Jay et al., 1995), the QssA
solver ET based on the extrapolation technique of
Dabdub and Seinfeld (1995), as well as the implicit
solvers LSODES (Hindmarsh, 1983), vODE (Brown
et al., 1989), sDIRK4 (Hairer and Wanner, 1991) and
RODAS* (Hairer and Wanner, 1991).

The first five of these are special purpose and com-
pute the solution in an explicit way, as opposed to the
last four which are all implicit and state-of-the-art in
the numerical stiff ODE field. For our purpose, the
solvers YODE, SDIRK4 and RODAS have been provided
with a sparse-matrix technique (Sandu et al., 1996) to
economize on the numerical algebra overhead in the
modified Newton solution. LSODES has already built
in a sparse-matrix technique and is a successor of
LSODE (Hindmarsh, 1983) which is popular amongst
atmospheric chemists as a reference code. By provid-
ing the implicit solvers with sparse-matrix techniques,
they belong to the fastest of their kind. In Section 4 we
describe the setup of the experiments. Section 5 con-
tains the results of the comparisons and the final
Section 6 collects a number of general remarks and
final conclusions.

All experiments discussed in this paper were carried
out on a single-processor workstation and concern
box-model tests. We emphasize that promising sol-
vers should also be compared in actual 3D transport
applications where the issues of memory use, vectoriz-
ation (Jacobson and Turco, 1994; Verwer et al., 1996)
and parallelization are of great practical importance.
Code changes connected with vectorization and/or
parallelization for a particular architecture can result
in CPU time decreases of orders of magnitude.

*RODAS is a Runge-Kutta—~Rosenbrock solver and hence
not implicit in the strict mathematical sense. However,
a Rosenbrock method requires the solution of linear systems
of algebraic equations, like an implicit method does if the
iterative Newton technique is used. For ease of presentation,
in this paper we therefore also call RoDAs implicit.

To enable interested readers to further extend this
benchmark comparison using their own solvers, as
well as to extend our problem set with other challeng-
ing example problems from atmospheric chemistry,
all the software we have used for the problems and the
solvers has been put on a [tp-site (see f[tp.
cgrer.uiowa.edu. (1996) and the instructions therein).

2. THE BENCHMARK PROBLEMS

The seven test problems are based on a set of five
chemical schemes which are presently being used in
various studies. Four of them describe gas-phase, and
one describes gas-liquid phase chemistry. All are fully
documented elsewhere. Before briefly describing each
problem, several general remarks are in order:

o All the test problems were uniformly coded
in FORTRAN using the KPP symbolic preprocessor
(Damian-lordache and Sandu, 1995). This uniformity
is important for a meaningful intercomparison, since
part of the algorithms need the derivative function in
production—destruction form, part need it in the stan-
dard form, and some of them need an analytical
Jacobian. None of the solvers was favored/inhibited
by a cheaper/ more expensive implementation of these
functions. FORTRAN code defining the test problems
can be obtained from ftp.cgrer.uiowa.edu. (1996).

o All problems were run for five days. This time
interval is sufficiently large for taking into account
several diurnal cycles originating from the photo-
chemical reactions. For all models the unit of compo-
nents of dy/d¢ used in the numerical tests is number of
molecules cm "3s7 !,

o The tropospheric gas-phase problems are based
on three different chemical schemes. These are the
15-species EUSMOG scheme, the 32-species CBM-Iv
scheme, and the 84-species mechanism implemented
in the STEM-11 model. This mechanism will be referred
to as AL. All three are used in present applications and
are representative of those being used in the atmo-
spheric chemistry models. Varying the size of the
mechanism is important since both implicit and ex-
plicit solvers are considered for this benchmark. The
stratospheric gas-phase problem contains 34 species
and the tropospheric gas-liquid phase one 65.

e The same urban and rural scenarios are
simulated with CBM-Iv and with AL. Although the
chemical conditions are identical and the calculated
results very close, the performances of the numerical
solvers depend on the chemical mechanism used. We
will make this point later in the paper.

# An important issue in our numerical comparison
is the use of a sparse matrix technique (Sandu et al.,
1996) to economize on the linear algebra costs which
the stiff solvers spend in the modified Newton iter-
ation. As a measure of these costs, we give in Table 1
the number of nonzero elements in the Jacobian
matrix, as well as the number of nonzero entries in the
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Table 1. The dimension of the test problems, the number
of nonzeroes in the Jacobjan matrix, and the number of
nonzeroes in the Newton matrix after the LU factorization
(difference between the numbers in the third and second row

is the fill-in)
Problem A B,C D, E F G
Dimension 15 32 84 34 65
Jacobian 57 276 674 246 506
Factorized 57 300 768 280 629

Newton matrix after the LU factorization. The ratio
between the number of nonzeroes in the Jacobian
matrix and the square of the dimension gives an
indication to which extent a sparse matrix solution
may improve the timing compared to a standard
dense matrix solution. If this ratio is small, say less
than about 1/4, and a reordering of the species exists
which gives rise to a small fill-in after the factori-
zation, then a good sparse solution technique will be
significantly more efficient than the standard dense
solution. The table shows that for our test problems
both the ratio for the Jacobian and the resulting fill-in
are quite small. The sparse matrix technique we have
used is based on a diagonal Markowitz criterion (see
Section 3.5 for some more details). Lest we miss the
obvious, for problems of a small dimension for which
the dense matrix numerical algebra costs are not
dominating, the gain in using a more efficient matrix
solution will be hardly noticeable in the overall costs.
This is the case for Problem A (see also Verwer et al.,
1996).

The dedicated explicit algorithms are scalarly im-
plicit and exploit the production-loss form of the ODE
system. They are based on the assumption that all
short-lived species, causing the problem to be stiff, are
only weakly coupled to all other species. In math-
ematical terms this implies that for these short-lived
species the loss term —L(t,y) is close to a stiff
eigenvalue of the Jacobian matrix, and that no
stiff eigenvalues exist which are not close to a loss
term. Following McRae et al., (1982), the following
reasoning explains this. Consider atomic oxygen
O which is a very fast reacting species. In many
models a typical predominant removal step for O (by
some orders of magnitude) is reaction with O, and
a third body M, i.c.

O+0,+M - 0; + M.

The kinetics for O is then well described by the scalar
ODE

dfo]

—— = Pio; — Ligy[ O],

a Lioy = k[0,](M]

where Lo, is a constant since the concentrations of
O, and M are fixed. Hence there exists no coupling
with other species through the loss rate. Because for
atomic oxygen coupling through the production rate
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Pyg) is very weak too, the predominance of the above
reaction now trivially implies that — Lo, is close to
a stiff eigenvalue of the Jacobian matrix of the whole
system and, in addition, that in first approximation
the exact solution for O is given by

[O)t + h) = o + ([O](t) - —Pl—ol)e“wv".

Lig Lo
This exact solution for truly constant coefficients
forms the starting point for the popular QSsA
methods.

Although this explanation is not mathematically
rigorous for the nonlinear problems we deal with, it
predicts to a great extent whether an explicit solver of
the type used in this paper can be justified in ad-
vance*. For each problem we therefore illustrate
the eigenvalue relationship in a table showing the
species and eigenvalues for which the relationship is
found to exist and the distribution of the remaining
part of the spectrumt of the Jacobian (see also Fig. 8
in McRae et al. (1982)). In this remaining part, eigen-
values thus can be of two sorts, either they are small
and hence do not introduce stiffness, or they are large
but cannot be associated with a single short-lived
species. If these latter eigenvalues exist, then the
special purpose explicit methods can fail completely.
Inspection of all the tables presented here will reveal
that these latter eigenvalues exist only for the tropos-
pheric wet problem G. This observation is in line with
our test results.

2.1. Problem A: The EUSMOG model

This problem is borrowed from a model which is
currently implemented and tested at the Cwl in
a Dutch smog prediction code in the framework of the
project EUSMOG (van Loon, 1995a, b). The problem is
a highly parameterized version of the EMEP MSC-W
ozone chemistry scheme (Simpson et al., 1993). It
consists of 15 reactions between 15 species and is
extensively described in van Loon (1995a). It has been
used before in the comparisons reported in Verwer
et al. (1996), where it has also been documented.
Information about the eigenvalues can be found in
Table 2.

2.2. Problems B and C: the CBM-VI model

These problems are based on the Carbon Bond
Mechanism IV (CBM-1V) (Gery et al., 1989), consisting
of 32 chemical species involved in 70 thermal and 11
photolytic reactions. The concentration of H,O was
held fixed throughout simulation. The CBM-IV mecha-
nism was designed for the numerical simulation of

*For one of these, namely TWOSTEP using Gauss-Seidel
iteration, the coupling between short- and long-lived species
may be stronger, since Gauss-Seidel iteration introduces
a form of “triangular implicitness”.

tAll the eigenvalues were computed with the routine
dgees from LAPACK.
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Table 2. Distribution of real part of the spectrum of the
Jacobian for EUSMOG problem A

Problem A
Species i Re(4)

OH -9

All other € [~4x107% =0]

chemical processes in urban and in regional-scale
models. Test problem B describes an urban scenario
and simulates a heavily polluted atmosphere. The
initial concentrations and the levels of hourly emis-
sions follow those described in Saylor and Ford
(1995). This helps to relate our results to those pre-
sented in the above-mentioned paper. Test problem
C describes a rural scenario and simulates a clean
atmosphere. It follows the 1pcC Chemistry Intercom-
parison Study, third Bio scenario (see Prather et al.
(1995)). The values of initial concentrations and the
values of hourly emissions are given in Table S. The
emission was released in equal quantities at the begin-
ning of each time interval. Information about the
stiffness of the models in terms of the eigenvalues of
the Jacobian is presented in Table 3.

2.3. Problems D and E: the AL model

The test problems D and E are based on the largest
chemical system tested here. They employ the kinetic
mechanism that is presently used in the STEM-lI
regional-scale/transport/chemistry/removal model (Car-
michael et al., 1986), consisting of 84 chemical species*
involved in 142 thermal and 36 photolytic reactions.
The mechanism, based on the work of Atkinson et. al.
(1989) and Lurmann et al. (1986) can be used to study
the chemistry of both highly polluted (e.g., near urban
centers) and remote (e.g., marine) environments. Prob-
lem D is an urban scenario, while problem E a rural
one, based on IPCC scenario 3. The simulated condi-
tions and initial concentrations are identical to those
employed in problems B and C, respectively. The
values of initial concentrations, and the values of
hourly emissions are given in Table 5. The emission
was performed in equal quantities at the beginning of
each time interval. Information about the stiffness of
the models in terms of the eigenvalues of the Jacobian
is given in Table 4. Since AL does not treat explicitly
O('D) and O(®P) , the large negative eigenvalues
associated with these species are not present.

2.4. Problem F: a stratospheric model

This test problem is based on the chemical mecha-
nism that has been used in the NASA HSRP/AESA
stratospheric models intercomparison. The initial

* Plus 4 species whose concentrations were held fixed
throughout simulation: H,0, CO,, O,, H,.

Table 3. Distribution of real part of the spectrum of the
Jacobian for CBM-Iv problems B and C

Problem B (urban) C (rural)
Species i Re(4;) Re(~,)
O('D) —-8.11x 108 —8.11x 10®
O(°P) - 8.26 x 10* - 8.26 x 10*
ROR —-247x10° — 246 x 10°
OH — 46 - 3.5
TO, —4.27 - 42
All other € [-1.5 =0] [-0.14. 0]

Table 4. Distribution of real part of the spectrum of the
Jacobian for AL problems D and E

Problem D (urban) E (rural)
Species i Re(4) Re(2;)
OH —28 — 1.81
CRO, — 145 — 138
CHO, - 145 - 1.30
MAOO -123 - 117
MVKO —-1.23 - 117
MCRG -1.23 - 1.17
All other € [-0.3, =0] [-0.03, =0]

concentrations and the values of the rate constants
follow the NASA region A scenario* with the difference
that the photolysis rates were piecewise linearly inter-
polated. There are 34 speciest involved in 84 thermal
and 25 photolytic reactions. The values of initial con-
centrations for the most important species are given in
Table 6. No emissions have been prescribed. For
a complete description of the problem we refer to the
NASA ftp site. Information about the stiffness of the
problem in terms of the eigenvalues of the Jacobian is
given in Table 7.

2.5. Problem G: a wet model

From the numerical point of view, this test problem
is the most difficult one. It contains 65 species}
involved in 77 thermal and 11 photolytic gas-phase
chemical reactions, 39 liquid-phase chemical reactions
and 39 gas-liquid mass transfer reactions. The
gas-phase mechanism is based on CBM-IV, while
the liquid-phase mechanism is based on a chemical
scheme the authors obtained from Matthijssen
(1995). Initial concentrations are given in Table 9.
Information about the stiffness of the problem in
terms of the eigenvalues of the Jacobian is given in

*Model available at NASA ftp site, contact Douglas E.
Kinnison, kinnison1@llnl.gov.

tPlus 6 species whose concentrations were held fixed
throughout simulation: H,O, CO, O,, H;, N,, CH,.

}Plus 5 species whose concentrations were held fixed:
H;O (vapour), H,O (drops), CH,. O,, CO,(aq).
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Table 5. Physical conditions, initial concentrations and
hourly emissions for the tropospheric problems B, C, D and
E (Toluene and Xylene, which are treated independently in
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Table 7. Distribution of real part of the spectrum of the
Jacobian for the stratospheric problem F

CBM-IV, arc lumped as Aromatics in the AL model) Problem F
Species Problem Species i Re(4;)
O('D) —2.53x10°
B, D (urban) C., E(rural) HCO ~1.06x 103
Clo0 - 1.70 x 10*
Initial Emission Initial Emission CH, —9.98x 102
(ppb) (ppbh™') (ppb) (ppbh™') H - 1.17x10?
CH,;0 - 16
NO 50 1 0.1 001 Cl ~45
NO, 20 0.2 0.1 0.01 o¢P) - 1.37
HONO 1 —_— 30 — All other € [-0.5, =0]
0, 100 — 0 —_
H,O0, 1 —_ 2 —
CcO 300 2 100
HCHO 10 0.2 0 — .
ALD, 10 0.2 0 Table 8. Distribution of real part of the spectrum of the
PAN 1 — 0 — Jacobian for the wet problem G
Alkans 50 2 0 —
Alkens 10 1 0 Problem G
Ethene 10 0.2 0 - . )
Aromatics (AL) 20 04 0 — Species i Re(4;)
Toluene (CBM-lv) 10 0.2 0 — HI‘fO;M, -22x10°
Xylene (CBM-1v) 10 02 0 — O('D) - 81x10°
Isoprene 10 1 1 0.1 ggz(-_q) - l-g x :g:
Relative e - 13x
humidity 80% HCOOH g, SO24qp —1.25¢e+7, —3.65¢+6, —le+6,
I:ﬁn:ged;ature 28:1:; K HCOOg,, NHy, Okg, —4.26+5, —13¢+5, —82e+4,
Pressure 1013.25 mbar HO,uq OH, O, Hiy,  —2e+4, —9+3, —2.46e+3,

Air density 2.55 x 10'* mlcem ™3

Table 6. Initial concentrations and physical conditions for
the stratospheric problem F

Species Initial Species Initial
(ppb) (ppb)

o 8.15 0, 656

NO 10.7 NO, 275

HNO, 0.35 H,0 6100

OH 0.2 HO, 0.14

H, 370 CH, 490

co 20 Clo 1

HCI 215 HOCI 0.22

Temperature 24143 K

Altitude 40 km

Latitude 65°N

Pressure 2.7 mbar

Air density 8.12x10*¢ mlcem ™

Hsos_(aq)'OH(nq)' CH30,

NOjqr ROR, NO3(,
All other €

—22e+3, —2e+2, —15¢+2,
—90, —30,-15
[-10, =0]

Table 9. Initial concentrations and emissions for the wet

problem G

Species Initial Emission Species Initial

(ppb)  (ppbh7Y) (ppb)
NO 0.2 0.01 0O, 60
NO, 0.5 0.01 CO 200
H;0, 1.5 — HCHO 1.0
PAR 1.2 — Ethene 24x1072
ISOP 1.0 0.05 Xylene 2x1072
SO, 33x10°2 — Toluene 3x1072
Temperature 288.15K
Altitude Okm
Relative humidity 80 %
Liquid water 0.0436 %

Air density 2.50 x 10'"? micem 3

Table 8. Of numerical interest is the fact that only
for the four most negative eigenvalues does the rela-
tion A;~ —L; hold, while (different from the
gas-phase-only test problems) the number of stiff eig-
envalues is much larger. This is due to the rapid
gas-liquid phase kinetics. In Table 8 we have listed
these large negative eigenvalues and the species
with large L, but without making a one-to-one
correspondence between them.

3. THE SOLVERS

We have chosen nine solvers from the litera-
ture. Four of them are off-the-shelf, general purpose,
implicit stiff ODE solvers. Three of them have
been modified by implementing a sparse matrix tech-
nique, while the fourth already contained such a tech-
nique. The other five solvers are explicit and special
purpose. The implicit solvers are fully documented
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elsewhere and will be discussed here only very briefly.
The explicit solvers are not standard. For these
we will therefore give the underlying integration
formulas. All solvers use variable step size control.
To save space, implementation details on the variable
step size control are omitted. The interested reader
is referred to ftp.cgrer.uiowa.edu. (1996), from
where for each solver and each driver program used
our FORTRAN code can be obtained. Before briefly
describing the solvers, several general remarks are
in order:

o The explicit solvers are applied to the given ODE
system (1) without problem-dependent modifications.
Modifications, such as lumping, can improve their
performance notably (see e.g. Verwer et al, 1996
where this is illustrated for the EUSMOG problem), but
have the disadvantage of being problem dependent.
With lumping we mean here the technique of group-
ing species into chemical families to reduce, for
example, the stiffness, or to enforce conservation for
a chemical family (see Hov (1978) Hesstvedt et al.
(1978) where this form of lumping was proposed first
for the QssA method). Hence our comparison empha-
sizes the numerical properties and performance of the
solvers applied.

e The variable step size control requires the choice
of a relative error tolerance rtol and an absolute error
tolerance atol. The choices made for atol and rtol
differ per solver and are not specified here. Note-
worthy is that at certain times the concentrations of
some species (e.g. radicals) can become smaller than
1.0 mlccm ™3, Because these values are insignificant,
they are ignored in the step size control.

e Often we also prescribe a minimal step size.
The use of a minimal step size improves efficiency
since extremely small steps can be selected by a
variable step size selection scheme. Atmospheric
chemistry problems containing photochemical reac-
tions can possess time constants as small as 1078
to 107 ° seconds and step size selection mechanisms
do signal these. However, these extremely small step
sizes are redundant because the minimal time con-
stants of importance for photochemical chemistry
models are of the order of seconds and species
with a time constant truly smaller almost instan-
taneously get in their (solution dependent) steady
state when they are perturbed. On the other hand,
too large lower bounds for the step size can cause
convergence and loss of accuracy problems to the
numerical solvers.

e All sparse implicit solvers work with the
analytical Jacobian matrix and can be shown to
mimic conservation rules which exist for the ODE
system. This does not hold for all of the explicit
solvers.

e A numerical comparison should focus on
modest accuracies, say relative accuracies near 1%.
Higher accuracy levels are redundant for the actual
practice of air pollution modelling.

3.1. 0SS4

Two QSsA solvers were used. The first is based on
the most simple QssA formula

yn-r U = p~ bty ¥

+ (I — e M) L7 Y(E, ) Pty Y7, (2)

where y” denotes the numerical approximation at time
t=1, and h denotes the step size. This formula is
explicit because the loss matrix L is diagonal. The
notion explicit thus means that no systems of alge-
braic equations need to be solved. The second is based
on a Richardson extrapolated form of equation (2)
and reads (Jay et al,, 1995)

W= 005 h), yis'? = Q" h2)
Wl =QOrEYE h2), Yyt =240 — Wt (3)

where Q(y,; h) refers to equation (2). The extrapolated
scheme is slightly more than two times expensive per
time step of length h. The order of accuracy of equa-
tion (3) equals two, whereas equation (2) is of order
one. See ftp.cgrer.uiowa.edu. (1996) for more details.

32. CHEMEQ

One of the first dedicated, explicit methods for
solving chemical equations in comprehensive advec-
tion-reaction models is the hybrid algorithm of Young
and Boris (1997). It is currently implemented in the
CALGRID mesoscale model (Yamartino et al., 1992). In
the original algorithm, the species are dynamically
separated into two categories (fast and slow) accord-
ing to the relative magnitude of their life-times
7 = 1/L, with respect to the current step size h. Each
category is integrated with a special predictor—correc-
tor formula. Our implementation of CHEMEQ follows
the one described in Saylor and Ford (1995) and is
based on the following predictor—corrector pairs (the
abbreviation P} stands for Pyt,, y"), etc.):

e If 1, > Sh (slow species):
predictor: yi*! = yi + h(Pi — Liy))  (4a)
corrector: i+ = yi + 4 (P} — L} yi
+ PR - LETIRTY  (4b)
o If 0.2h < 7, < 5h (intermediate species):

Yi 2tk — h) + 2hP; 1
25+ h

predictor: y3*! = (5a)

corrector: yi*!

_ i+ g —h)+4 PR+ PR+ Y
g+t +h

(5b)
o If 1, < 0.2h (fast species):

steady-state assumption: y3*! = Py/L2 6)

A quick inspection will reveal that the corrector for-
mulas are all derived from the implicit trapezoidal
rule. They are applied, however, in an explicit manner.
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Hence, denoting y{? as the kth component of the ith
corrected approximation y® for y"*!, in all occur-
rences y{” is simply substituted in the right-hand
sides of the corrector formulas, so as to compute the
new approximations y§ * ). The correctors are applied
until

yErD — P

where tol is an imposed tolerance value for the step
size control which is based on atol and rtol. In case of
non-convergence, the step is rejected and the compu-
tations restarted with h,., = 0.6h. In case of conver-
gence the integration proceeds with h,, =

hmin(1.1, fac) , where fac = \/tol/err with err the
estimation for the local truncation error. It is empha-
sized that the step selection in the original CHEMEQ is
based uniquely on the convergence of corrector iter-
ates, whereas we use an estimation for the local error
to govern the step size. However, following CHEMEQ
philosophy, a local error greater than tol does not
force a step rejection. It only restricts h,,. See
ftp.cgrer.uiowa.edu. (1996) for more details.

m?x < 0.3 tol,

33. ET

The solver ET uses an extrapolation algorithm pro-
posed in Dabdub and Seinfeld (1995). The approxima-
tions used for the extrapolation are computed with
a predictor—corrector pair of which the corrector is
a QSSA type formula. To describe the formulas used,
we adopt the implicit notation used for CHEMEQ.
Hence the evaluations of the right-hand side of the
implicit formulas have to be thought of as carried out
in the same way as for CHEMEQ. The predictor for-
mula implemented in the solver tested in this paper is
the simple QSSA formula

yrl=eMy r(d —eyw)mien (7)

Like for CHEMEQ, the corrector dynamically separates
the species into three categories:

e If t, > 100h, the trapezoidal rule is used,
N =i+ AP LIk + P LY. (8)

If 0.1h < 7, < 100h, the equations are corrected using
the QSSA type formula

" n n n 1 1 h
nt=yrtt + k- 'l/n“)exp[-(z’;‘ + IE:‘{)E],
]
where Y2 *! is defined by

1 1
W“=f(Pi'H+P:)(E:—:;+E)- (10)

e If t, < 0.1h, the steady-state assumption is made,
ie.,

B=eth (11)

For details about how the extrapolation is organized
and the corrector is used we refer to Dabdub and
Seinfeld (1995). See also ftp.cgrer.uiowa.edu. (1996) for
more details.

34. TWOSTEP

TWOSTEP (Verwer, 1994; Verwer et al., 1996; Verwer
and Simpson, 1995) is based on the variable step size,
two-step backward differentiation formula (BDF)

}’"-“ = Yn+yhf(tn¢l9y"+l)’h=tn+l —tn (12)

where y =(c+ 1)c +2), c=(ty = t,- ) /tas1 — L)
and

Yr=((c+ P =y )/ + 20).

The 2nd-order BDF formula (also denoted by BDF2)
has been chosen in view of the modest accuracy re-
quirement. Rather than using the common modified
Newton iteration, the classical Gauss-Seidel or Jacobi
iteration technique is used for computing an approxi-
mation to the implicitly defined y"*'. In the applica-
tion of these techniques we exploit, to some extent, the
production-loss form equation (1), by which equa-
tion (12) can be written as

Yy =Fy"t ) = (I + yhL(tye 1, y" ') 7!
X(Y" + yhP(ty+1,y"" ). (13)

The Gauss-Seidel technique is now applied to the
nonlinear system of equations y = F(y). That is, given
the iterate y¥ as the ith approximation for the sought
solution y"*'!, TWOSTEP computes the next iterate
y¥*1 by the componentwise formula

wry =Fk(y‘x"”’,-...y"fx".yi",...,yﬁ.".’),k =1,....m.

(14)

This results in an explicit computation owing to the
diagonal form of L. More precisely, for the computa-
tion of yf*! only division by the scalar variable
1 + yhLy(t,+ 1, v) is required, where v denotes the in-
termediate vector

b= [ D, 2D 0, Ly

The fact that in v the first (k — 1) components are
taken from the new iterate, makes equation (14)
a Gauss-Seidel type iteration process. When we take
all m components in v from the old iterate y* , then
an iteration method of Jacobi or Picard type results.
Computationally, there is not much difference
between the two, although Gauss—Seidel has to be
programmed in line. Hence Jacobi iteration is some-
what easier to use. Here we will use both types
of iteration techniques. Note that for the
Gauss—Seidel technique the order of the species plays
a role when only a small number of iterations are
used. In all experiments we in fact restrict the number
of iterations to only two. In Verwer et al. (1996) and
Verwer and Simpson (1995) this has been shown to
work well.
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TWOSTEP is based on a two-step formula
which cannot be applied at an operator-split restart.
At restart the one-step backward Euler formula is
therefore used, which simply means that Y" = )"
The explicit iteration process is the same, so that
there is no additional penalty at restart associated
with extra linear algebra computations as is the case
for implicit solvers using a Newton type iteration.
TWOSTEP allows a maximal growth in step size
at restart by a factor of two. This is less than one-
step solvers usually allow, but still quite acceptable
in view of the explicit iteration process. For more
details on the code we refer to Verwer et al. (1996),
Verwer and Simpson (1995) and ftp.cgrer.uiowa.edu.
(1996).

35. VODE

VODE is a “Variable coefficient Ordinary Differen-
tial Equation” solver based on the implicit BDF for-
mulas (Brown et al., 1989; Hairer and Wanner, 1991)
and a successor of the “Livermore Solver” LSODE
from Hindmarsh (1983). The latter is popular in the
field of atmospheric chemistry. For a discussion of the
mathematical techniques implemented we refer to
Brown et al. (1989), Hairer and Wanner (1991). We
used VODE as a black box with its user parameter
istart = 1, except that we modified the code to careful-
ly exploit the sparsity of the Jacobian matrix. This
reduces the costs of solving the linear algebraic sys-
tems arising in the modified Newton iteration. In
Jacobson and Turco (1994) and Verwer et al. (1996) it
has been shown that this is very profitable for atmo-
spheric chemistry problems. We used the sparse linear
algebra implementation described in Sandu et al.
(1996). The necessary routines are automatically
generated by the symbolic chemical preprocessor
KPP Damian-lordache and Sandu, 1995, which
transparently:

@ determines the sparse analytical Jacobian,

e reorders the species using a diagonal Markowitz
criterion, in order to minimize the fill-in resulting
from the LU decomposition of the matrix used in the
modified Newton process,

e analyses the pattern of zeros in the Jacobian and
builds the data structures needed for the sparse
Doolittle LU decomposition,

e generates loop-free code for the forward-back-
ward substitution routines.

The performance of VODE appeared to be sensitive
to the choice of the absolute tolerances. Using the
natural value atol = 1.0 was not always optimal. We
therefore set them componentwise as

atol; = max(107%, 1072 rtol ;) (mlcem™3)
where 7; estimates the magnitude of the concentration
of species i. See ftp.cgrer.uiowa.edu. (1996) for other
specific parameter settings.
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3.6. SDIRK4

This solver has been borrowed from Hairer and
Wanner (1991) where a full description along with
numerical results can be found. It is based on a 4th
order, diagonally implicit Runge-K utta method using
five stages. Because this solver is of one-step type, it
allows a fast increase in step size after a restart. For
atmospheric chemistry applications this is an obvious
advantage. We have only modified it for the treatment
of sparsity as described in Section 3.5. Hence all strat-
egies were unaltered. See ftp.cgrer.uiowa.edu. (1996)
for specific parameter settings.

3.7. RODAS

This solver has also been borrowed from Hairer
and Wanner (1991). It is based on a 4th order,
Runge-Kutta-Rosenbrock method using six stages.
This solver is also of one-step type and hence shares
the advantage of a fast increase in step size after
a restart with SDIRK4. The code has been modified for
the treatment of sparsity as described in Section 3.5.
All strategies were unaltered. See ftp.cgrer.uiowa.edu.
(1996) for specific parameter settings.

3.8. LSODES

LSODES is a version of the popular BDF code LSODE
which exploits the sparsity in the Jacobian matrix by
calling linear algebra routines from the Yale Sparse
Matrix Package (Eisenstat et al., 1977, 1982). It is
obvious that VODE and LSODES are closely related.
For our application an important difference is that
VODE uses a dedicated sparsity technique, whereas
LSODES uses the general Yale package, which is less
efficient, in general. LSODE and LSODES are often used
to solve atmospheric chemical kinetics equations (see
e.g. Saylor and Ford, 1995). The code was applied
with its user parameter setting MF = 121, i.e. analyti-
cal Jacobian with an inner estimation of the sparsity
structure. See ftp.cgrer.uiowa.edu. (1996) for other
specific parameter settings.

4. SETUP OF EXPERIMENTS

The solvers are tested as if they were used in an
operator splitting environment. This means that we
split the total integration interval into N subintervals
of length At. For each subinterval we then restart the
integration of the stiff solvers. For all test problems
the length of the subintervals equals Ar = 3600 s lead-
ing to N = 120 new starts over the 5d period. The
3600 s subinterval means that we reckon witha 1800 s
transport time step, assuming a Strang splitting sym-
metrized around the chemistry step. It should be
stressed that the choice of the subinterval length is
important for a box-model comparison, since this
length determines the number of restarts. Restarts are
expensive for implicit solvers using a Newton type
iteration due to the linear algebra overhead. This
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holds in particular for the multistep solvers VODE and
LSODES. For the one-step implicit solvers RODAS and
SDIRK4 the penalty is less, since they are able to
enlarge the step size after restart considerably faster.
Generally, for any explicit solver the penalty is also
less because of the absence of linear algebra overhead.

All test problems contain photochemical reactions.
This means that part of the reaction constants are
determined by time of the day dependent photolysis
rates which undergo a rapid change at sunrise and
sunset. This change gives rise to large variations in
concentration values and normally force a solver to
adjust the step size. In Problem A the photolysis rates
are given by a C° function, while in Problems B, C, D,
E, F and G by a C’ function which are zero at nightly
periods.

All the runs were made in double precision on
a HP-UX 935 A workstation with a CPU clock fre-
quency of 125 MHz and 160 Mbytes RAM. The nu-
merical results for all test problems are compared
with a very accurate reference solution computed by
the code RADAUS from Hairer and Wanner (1991)
with the very tight tolerances rtol =10"12
atol; = 107 '3y, where n; estimates the magnitude of
the concentration of species i in unit mlccm ™3, Our
measure of accuracy is based on a modified root mean
square norm of the relative error. With the reference
solution y and the numerical solution y available
at {t,=1to+nAt, 0<n< N}, we first compute
for each species k

l yk(tu) - ﬁk(tn) Vz
ER, = [— ¥ R
Ri \/ w.?;. vty |

where J,={0<n<N:|pt)l=a}. (19

Hence we compute specieswise a temporal error
measure, which we then represent in the plots in two
ways. Through the number of significant digits for the
average of ER,, defined by

1 m
SDAl = "IOg]o(— ZER.)

my=y

(16)

and the number of significant digits for the maximum
of ER,, defined by

SDA, = —logw(m:ix ER,). (17
The threshold factor a used here is given the value
a = 1.0 mlccm ™3, If the set J, is empty, the value of
ER, is neglected. The purpose of considering the
above defined error measure instead of the root-mean
square norm (a = 0) is to avoid chemically meaning-
less large relative errors for concentration values
smaller than 1.0 mlccm ™3, It is instructive to present
the accuracy of the computed results using averaged
and maximal errors taken over the number of species.
Finally, in the work-precision diagrams of the follow-
ing section, efficiency is measured by CPU time. This is
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of course dependent on the computer architecture
used. However, the relative magnitudes shown here
should be applicable to scalar computers in general.
We thus plot the SDA values against the measured
CPU times on a logarithmic scale in unit seconds.
Observe that SDA =2 means 1% accuracy in the
error measure used. In discussing the results presented
in the next section we focus on this accuracy level. The
different data points in the plots for the same solvers
are associated to runs carried out for different relative
tolerances.

5. RESULTS AND ILLUSTRATIONS

5.1. Problem A: the EUSMOG model

The work-precision diagram is given in Fig. 1. The
implicit integrators and the two versions of TWOSTEP
perform very well. For an accuracy of two digits,
sparse VODE appears to be the fastest. The good
performance of implicit integrators is due in part to
the small dimension of the system which means less
work with the linear algebra. Note that the JACOBI
and (GAUSS-) SEIDEL versions of TWOSTEP have sim-
ilar performance for this test problem (see also Verwer
et al. (1996)). It is clear that the simplest QsSA solver,
ET and CHEMEQ are the slowest among the tested
routines. It is also worth noting that the QssaA perfor-
mance greatly improves by extrapolation.

5.2. Problems B and C: the CBM-1V model

In Fig. 2 the numerical results for test problems
B and C are presented. For obtaining two accurate
digits, RODAS appears to be the fastest, followed by
SDIRK, VODE, LSODES and TWOSTEP SEIDEL. The latter
is the best when less accuracy is demanded, while the
implicit codes are preferable for higher precisions.
This is due to the fact that they use higher-order
formulas (nicely represented by the higher slopes of
their diagrams). An interesting remark is that the
slope of the TWOSTEP JACOBI diagram decreases when
higher accuracies are required. This is due to an im-
posed minimal step size of 0.01 s, which makes the
convergence of the Jacobi iteration very slow on part
of the time interval. Since TWOSTEP was used with
a fixed number of only two iterations, this is directly
reflected in the accuracy of the solution. A minimal
step size larger than 0.1 s creates similar problems in
TWOSTEP SEIDEL. The gap between the two TWOSTEP
diagrams is due primarily to the different values of the
minimal step size used: 0.01 s for JAcoBI and 0.1 s for
SEIDEL. The explicit solver ET is not competitive at all.
Its work-precision diagram is situated to the far right
of Fig. 2. Among the other integrators, QSsA is clearly
the slowest, but by extrapolation it gains about one
accurate digit for the same CPU time. In both scen-
arios CHEMEQ performs better than the plain Qssa
scheme but worse than Extrapolated QSSA. As ex-
pected, the LSODES and sparse VODE diagrams are
similar, except that the LSODES one is shifted to the
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Fig. 1. Work-precision diagram for test problem A (EUSMOG) : TWOSTEP SEIDEL (dashed), TWOSTEP JACOBI

(dashed with “O™), @ssa (dots), Extrapolated Qssa (dots with “O™), ET (dots with “s”), CHEMEQ (dash-dots),

Sparse VODE (solid), Sparse SDIRK4 (solid with “+”), Sparse RODAs (solid with “x”) and LSODEs (solid
with “O").

right. Working with predefined sparsity data struc- 5.3. Problems D and E: The AL model

tures, VODE is consistently faster than the general The results are reported in Fig. 3. It is interesting to
purpose LSODES. However, despite its generality, for compare code performances to those obtained for test
test problems B and C LSODES performs very well.  problems B and C, since the same urban and rural
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Problem B (CBM-IV URBAN), 8DA_!.
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Fig. 2. Work-precision diagram for test problems B and C (cBM-1v): The upper pair of diagrams correspond

to problem B and the lower pair to problem C. TWOSTEP SEIDEL (dashed), TWOSTEP JacoBI (dashed with

*0O"), QssA (dots), Extrapolated QssA (dots with “O”), ET (dots with “»”) CHEMEQ (dash-dots), Sparse VODE
(solid), Sparse SDIRK4 (solid with “«™), Sparse RODAS (solid with “x"”) and LSODEs (solid with “O7).

scenarios are simulated with both CBM-1v and AL.
They differ however in the number of reactions and
species, the current problems D and E being much
larger. If a standard implementation of the implicit
solvers was used, their linear algebra workload would
have increased as m*, with m the number of species,
while for dedicated explicit integrators the workload
increases linearly with m. Thus, at first sight, for suffi-
ciently large problems use of explicit integrators
seems to be preferable. Because we use a sparse linear
algebra implementation, the situation becomes truly
different. For the sparse implementation a rough es-
timation of the linear algebra workload is given by the
number of nonzero elements in the Newton matrix. As
seen in Table 1, this number increases almost linearly
with m for the test mechanisms considered here. This
means that even for fairly large chemical systems,
sparse implicit solvers may very well remain competi-
tive. Our test results shown in Fig. 3 clearly illustrate
this. For both problems all sparse implicit solvers
outperform the dedicated explicit ones, with the ex-
ception of TWOSTEP SEIDEL. The gap between this

code and its JACOBI version is again due to the fact
that SEIDEL iterations allow the use of larger values
for the minimal step size. Still, this imposed minimal
step size causes convergence problems in part of the
time interval, which explains the curious slopes of
TWOSTEP in the range of high accuracies for the more
difficult urban scenario. Noteworthy is that the one-
step solver RODAS is the fastest in the 1% error region.
For the more difficult urban problem, the two
one-step solvers RODAS and SDRIK4 are always faster
than their BDF counterparts VODE and LSODES. The
explicit solver ET fails to integrate problem D and is
among the slowest for problem E. The CHEMEQ dia-
gram is in between that for QSSA and EXTRAPOLATED
QssA. The latter clearly performs better in the rural
cases than in the urban ones for both CBM-Iv and AL
mechanisms.

5.4. Problem F: the stratospheric model

This problem has about the same dimension as the
two CBM-IV problems, but the integrators perform
quite differently relative to each other as shown in
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Fig. 3. Work-precision diagram for test problems D and E (aL): The upper pair of diagrams correspond to

test problem D, while lower pair to test problem E. TwOSTEP SEIDEL (dashed), TWOSTEP JACOBI (dashed with

“O™), gssa (dots), Extrapolated Qssa (dots with “O”), ET (dots with “»”), CHEMEQ (dash-dots), Sparse VODE
(solid), Sparse spIRK4 (solid with “x™), Sparse RODAS (solid with “x™) and LSODES (solid with “O”).

Fig. 4. The implicit integrators work best. There is not
much difference between their performances, but there
is a large gap between them and the explicit codes,
with the largest for ET, CHEMEQ and the two QSsA
solvers. In particular, for this problem the implicit
codes require less CPU time than for CBM-IV, whereas
for TWOSTEP the amount of CPU time almost remains
equal. From an additional investigation we learned
that the absence of emissions in the stratospheric
problem must play a role here. Without emissions,
concentration values vary less in between the one
hour subintervals. The implicit solvers enjoy this,
since as a rule they allow larger step sizes than TWO-
STEP. We have checked this observation by removing
the emissions in the CBM-Iv model. In this case the
implicit solvers also integrate much faster, the cPU
timings being then similar to those obtained for the
stratospheric problem.

5.5. Problem G: the wet model

As we have previously seen, this test problem has
a large number of stiff eigenvalues, most of which

cannot be associated to certain short-lived species.
This makes the test problem G numerically chal-
lenging in the sense that the explicit methods fail.
Numerical results confirm that the explicit formulas
described in Section 3 cannot solve this problem with
a reasonable efficiency. We tested each routine with
the loosest restrictions on step size and tolerance for
which the numerical results were still meaningful. See
the codes ftp.cgrer.uiowa.edu. (1996) for the exact set-
ting of the parameters. The timings obtained for integ-
rating the first 10 s (or 1 h) of evolution are given in
Table 10. When looking at the results, keep in mind
the fact that all the implicit solvers integrate the test
problem along the five days interval in less than 10s
CPU time. Among the dedicated integrators, TWOSTEP
SEIDEL performs best. However, even this code selects
very small step sizes, which is not the case when a fully
implicit implementation of the BDF2 formula is
used (VODE with restricted maximal order). The be-
haviour of the dedicated integrators is typical for
standard explicit formulas applied to general stiff
problems. To make the terms of comparison more
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Fig. 4. Work-precision diagram for test problem F (STRATO): TWOSTEP SEIDEL {dashed), TWOSTEP JACOBI

(dashed with “O”), ssA (dots), Extrapolated Qssa (dots with “O”), ET (dots with “+”), CHEMEQ (dash-dots),

Sparse VODE (solid), Sparse SDIRK4 (solid with “s”), Sparse RODAS (solid with “x”) and LSODEs (solid
with “O").

clear, we estimated the CPU time that would be Some effort has been made to optimize the perfor-
needed to complete the five days simulation. This mance of the implicit solvers for this test problem.
estimated time is given in the last column of Table 10. RODAS and SDIRK4 were used with a minimal stepsize
The explicit solver ET gives a floating point exception of 10~ 35, while for VODE a minimum of 10785 ap-
on this test problem and is not included in the table.  peared to be best. No minimal step size was prescribed
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for LSODES. For sparse VODE the maximal order
was restricted to three. Although the original vODE
had no problems integrating this model, the sparse
version selected tiny step sizes when a maximal order
of four or five was used. The work-precision dia-
gram for the implicit schemes is given in Fig. 5, which
shows that RODAS, VODE and SDIRK4 perform equally
well.

6. OVERALL CONCLUSIONS AND REMARKS

Although we have taken any reasonable precaution
in implementing the models and in testing the codes,
still undiscovered errors and/or less optimal settings
of user parameters may have affected part of the
numerical results presented here. The interested
reader therefore is invited to repeat the experiments
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Table 10. The timing of dedicated integrators on test prob-
lem G. The last column represents the estimated cpPu time
needed to complete the five days simulation

Integrator Simulated CPU Estimated
interval (s) time (min) total cPU
QSSA 10 19 350d
Extrap Qssa 10 33 650d
CHEMEQ 10 0.5 15d
TWOSTEP J 10 9 270d
TWOSTEP S 3600 53 103h

using our codes from ftp.cgrer.uiowa.edu. (1996) and to
join us* in this benchmark activity. In future work we
will continue evaluating hybrid and other numerical
schemes. The results presented in the present paper
indicate to the following conclusions and remarks:

e The sparse implicit solvers work efficiently for all
problems tested here, including the gas-liquid phase
one. In all the cases they give the fastest solution,
when two or more accurate digits are required. In
general RODAS, VODE and SDIRK4 have comparable
performances, although their ranking relative to each
other may differ with problem. In most test cases
sparse RODAS is the fastest in the 1% error region,
with VODE being the best for problems A and F. The
one-step Runge-Kutta solvers RODAS and SDIRK4
clearly work better on the urban AL problem. It
should be noted that VODE appeared to be somewhat
sensitive to the choice of the absolute tolerances and
the choice of a minimal step size.

e Of the dedicated explicit solvers, TWOSTEP is
clearly the best. This solver outperforms the other
explicit solvers on all problems, often with a wide gap.
TWOSTEP is advocated for gas-phase problems only.
This code should not be applied to gas-liquid phase
problems. In general TWOSTEP SEIDEL is more effi-
cient than TWOSTEP JACOBI. However, Gauss-Seidel
iteration must be programmed in line which makes
TWOSTEP JACOBI somewhat easier to use. It is im-
portant to note that dedicated explicit solvers can
sometimes be significantly improved by problem-
dependent modifications like lumping and/or group
iteration. Of course, this requires a considerable
knowledge of the reaction mechanism.

o In most cases sparse VODE is more efficient than
the related sparse BDF solver LSODES. We owe this to
the fact that VODE uses a dedicated sparsity technique,
whereas LSODES uses the general Yale sparse matrix
package. We should also mention that LSODES is used
without a precribed minimal stepsize. Some addi-
tional runs with sparse VODE without a minimal step
size as well, demonstrated that this plays a minor role,
the difference in sparse matrix treatment being more
important. Both have been applied with the extra

*Contact J.G. Verwer (janv@cwinl) and A. Sandu
(sandu@cgrer.uiowa.edu).

storage option for the Jacobian matrix so as to avoid
Jacobian updates when possible.

e Since all the tested implicit solvers are general
purpose ones, except for the use of sparsity, we defi-
nitely think that within this class of methods there is
considerable room for efficiency improvements for
atmospheric chemistry applications. The current re-
search will therefore be continued with a search to
determine also a best or near-to-best sparse implicit
solver for atmospheric chemistry problems.

e The best sparse implicit solvers and the best
explicit solver (TWOSTEP) should also be compared in
3D model applications. While box model tests are
needed to select and develop promising ODE solvers,
in real 3D transport-chemistry models other factors
should be taken into account as well. Quite important
is the length of the time step in the operator splitting,
since this determines the number of restarts. Restarts
are expensive for implicit codes and one-step methods
of Runge-Kutta type have an advantage here over
multistep methods. Also robustness and ease of use
are important in 3D models, since a subtle tuning of
the ODE code is cumbersome due to the large variety
of conditions that will occur at different gridpoints.
Finally, the issues of memory use, vectorization
(Jacobson and Turco, 1994; Verwer et al., 1996) and
parallelization are of great practical importance too.
Optimal ODE solvers should be tested in a 3D soft-
ware environment where vectorization and paralleli-
zation take place.
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